
GPU computing - Homework 1

Luca Cazzola - 248716 - luca.cazzola-1@studenti.unitn.it

April 2024

1 Problem description

It is asked to implement a simple algorithm able to compute the transpose of a given non-symmetrical
squared matrix. Consider an arbitrary matrix X [n,m] having n rows and m columns, the transpose
t(X) is a matrix Y [m,n] such that it’s columns are the X’s rows.

1.1 Problem assessment

Algorithm 1 - Naive matrix transposition

Input: X
parameters: matrix-size ▷ matrix-size = n or m

for i = 0 to matrix-size do ▷ parse over rows
for j = i+ 1 to matrix-size do ▷ parse over columns

swap X(i, j) with X(j, i) ▷ swap elements

end for
end for

return X ▷ return transposed matrix

Note: Minor changes have been applied to the pseudo-code for better visualization and understanding

X being squared implies t(X) is equivalent to computing the symmetry along the main diagonal, for
this reason elements on the main diagonal don’t need to be moved. The provided solution has time
complexity of O(n2 − n) and I believe it’s not possible to find a lower one since all elements of the
matrix needs to be parsed (a different approach might be 3.1). That being said there’s room for
improvement during runtime if the cache behaviour is taken into account :

Figure 1: The cache perspective

1



Parsing element by element following the row-column order can be not so efficient for the cache
because C follows row-major ordering. Taken into account the case of a matrix: element X(i, j)
and X(i+1, j) can be found in consecutive memory addresses, while X(i, j) and X(i, j+1) are actually
1 row of elements (in bytes) apart. Each time a read operation is performed on the main memory a
cache line of consecutive elements is moved in cache instead, to make future accesses faster.

Taking into account the matrix transposition problem and assuming for simplicity that read and
write operations are done on 2 separate matrices X and Y what happens is that :

• While reading X : reading the first element will result into a miss since the matrix has never
been accessed. Next accesses will be faster due to caching until the cache line is exhausted.

• While writing Y : the entire first column will consist of cache misses since elements are stored
in row-major order and not column-major. When parsing the second column elements might
still be available in cache, but that’s less likely to happen because in the mean time the entire
first column has been parsed.

Following the spatial and temporal locality principles, which generally lead to a more efficient
cache usage the following implementation is proposed :

Algorithm 2 - Block-based matrix transposition

Input: X
parameters: matrix-size block-size ▷ block-size = same as matrix-size, but related to blocks

blocks-per-row = matrix-size / block-size

for diagonal = 0 to blocks-per-row do ▷ parse over the main diagonal blocks first
for i = 0 to block-size do

for j = i+ 1 to block-size do

row-index = i+ (diagonal ∗ block-size)
column-index = j + (diagonal ∗ block-size)
swap X(row-index, column-index) with X(column-index, row-index)

end for
end for

end for

for block-row = 0 to block-per-row do ▷ parse the rest of the matrix
for block-column = block-row +1 to block-per-row do

for i = 0 to block-size do
for j = 0 to block-size do

row-index = i+ (row-index ∗ block-size)
column-index = j + (column-index ∗ block-size)
swap X(row-index, column-index) with X(column-index, row-index)

end for
end for

end for
end for

return X ▷ return transposed matrix

Note: Minor changes have been applied to the pseudo-code for better visualization and understanding

X is divided into blocks of defined size and operations (swaps in our case) are performed more
locally within elements belonging to symmetrical blocks (with respect to the main diagonal). This
allows a more localized job into the space and time domains. Blocks belonging to the main diagonal
are evaluated first respect to the others because they represent a sub-case, in which swaps are performed
inside a single block (and not a pair of blocks). Blocks are still accessed in row-column order after the
diagonal is parsed.

2



Figure 2: Visual : block swapping

Swaps are performed between blocks with matching color and letter

2 Experimental setup and analysis - CPU

Performance evaluation has been done on my own device. Here follows some of the hardware and
software specifics:

• Notebook : Dell XPS 15 7590

• CPU : Intel i7-9750H, 2.6GHz base - 4.5GHz max, cores : 6

• RAM : 2 × 8GB SODIMM DDR4 - 2667 MT/s

• Cache : 64 Bytes cache line

– L1 : 384 kB - 8-way Set-associative

– L2 : 1536 kB - 4-way Set-associative

– L3 : 12288 kB - 16-way Set-associative

• OS : Ubuntu 20.04

2.1 Performance analysis

(a) Execution time (b) Effective bandwidth

Figure 3: Naive vs. Blocks transposition

The two algorithms have been evaluated on matrices of exponentially increasing size, taking into
account both int32 and float32 data type. Block size is set to 24 since into a cache line of 64 bytes
at most 16 consecutive int32 or float32 elements can fit. The graphs clearly show a not significant
difference in handling the two data types. It’s also evident that the Naive approach is more
time consuming as the matrix grows. The block based approach also shows a more stable effective

3



bandwidth, sign of a overall better memory usage. To prove what’s been stated in 1.1 regarding the
cache contribution to this boost in performances here follows the related analysis :

Figure 4: Naive vs. Blocks - cache miss (Data)

By running a Cachegrind simulation on the two algorithms it’s evident how the Naive version
starts suffering in performances right after the matrix size 28 step, which is the moment X starts to
fill L1 cache size :

• L1 size = 384 kB ∼ 96k float32 elements - capacity exceeded in between 28 and 29 steps
Note : remember that ”matrix size” refers to the number of elements in a row/column.
Ex: At step 29, X contains 218 elements.

The Naive approach then stabilizes upon surpassing the 211 step, which again correspond to the filling
of both L1 and L2 cache levels.

• L1 + L2 size = 384 + 1536 = 1920 kB ∼ 480k float32 elements - capacity exceeded in between
211 and 212 steps

Performance drops are of course present in the block based approach, but occurs later due to better
usage of the cache. One might argue that the cache miss % could be biased due to some differences in
the algorithms implementations, especially related to the 2 additional for loops present in the block
version which interfere in the Cachegrind counting of total reads

total read misses % =
L1 read misses + L2 read misses

total reads
∗ 100

Total reads becomes higher due to just presenting more variables updates in the Blocks version respect
to the Naive one. Anyway this can be excluded noticing that regardless of the total number of memory
reads the Blocks version always performs significantly fewer misses.

Matrix Size NAIVE BLOCKS

L1 Read Misses L2 Read Misses L1 Read Misses L2 Read Misses
26 11 0 9 0
27 1,031 0 1,196 0
28 4,219 0 5,111 0
29 79,552 0 25,752 0
210 549,915 0 110,919 0
211 2,355,172 565,518 445,457 248,956
212 9,533,753 8,569,073 1,750,886 1,390,138
213 39,382,289 35,564,330 6,825,333 5,850,780
214 158,896,368 138,295,179 152,459,246 24,930,779
215 637,092,856 566,952,987 609,925,648 100,592,536

Table 1: Counting cache misses - Naive vs. Blocks

4



All the previously shown data was gathered using no compiler optimization level -O0. Let’s see if
performances changes increasing the optimization level :

(a) Execution time (b) Effective bandwidth

Figure 5: Compiler optimization levels comparison (Block version)

For such a small program the increasing compile time is not a problem at all. Performance wise
it’s evident how the optimization level -O2 offers the most benefit to the Blocks versions. Perhaps the
more aggressive loop optimization and data prefetching (which are the most relevant optimization
features to improve on such a problem) provided by -O2 have a better balance between simplicity and
aggressiveness with respect to -O0, -O1 and -O3.

3 Parallelization and future directions

The Block version of matrix transposition would really benefit from parallel computation since each
pair of blocks can be evaluated in a totally independent way respect to another. This will surely be
the first thing I’ll try when moving the problem on the GPU.

3.1 Alternative designs

Another way I’ve tried to approach the problem was by instead of physically swapping each element to
just set the addresses of X’s first row as pointers of Y . This would be a O(n) time complexity solution,
which on the other hand would require later to access Y always with n-striding access pattern, which
is not beneficial at all from the cache perspective since Y is physically still structured as X was
(row-major) but accesses in a different pattern. Led to that reasoning I didn’t further develop the
idea.

5



GPU computing - Homework 2

Luca Cazzola - 248716 - luca.cazzola-1@studenti.unitn.it

June 2024

4 Moving on the GPU

Algorithm 3 - Block-based matrix transposition on GPU

Input: matrix X (on device)
parameters: SIZE (size of X’s side), BLK SIZE (size of block in X to parse)

define 2 blocks on shared memory A and B of size BLK SIZE2

xA = blockIdx.x · BLK SIZE + threadIdx.x ▷ x,y base offset w.r.t. X of an element in A
yA = blockIdx.y · BLK SIZE + threadIdx.y
xB = blockIdx.y · BLK SIZE + threadIdx.x ▷ x,y base offset w.r.t. X of an element in B
yB = blockIdx.x · BLK SIZE + threadIdx.y

if blockIdx.x > blockIdx.y then ▷ parse upper non-diagonal block

for j = 0 to BLK SIZE step blockDim.y do ▷ copy to shared memory
for i = 0 to BLK SIZE step blockDim.x do

A[(threadIdx.y + j) · BLK SIZE + threadIdx.x + i] = X[(yA+ j) · SIZE + xA+ i]
B[(threadIdx.y + j) · BLK SIZE + threadIdx.x + i] = X[(yB + j) · SIZE + xB + i]

end for
end for

syncthreads() ▷ wait for A and B to fill

for j = 0 to BLK SIZE step blockDim.y do ▷ write back to global coalesced
for i = 0 to BLK SIZE step blockDim.x do

X[(yA+ j) · SIZE + xA+ i] = B[(threadIdx.x + i) · BLK SIZE + threadIdx.y + j]
X[(yB + j) · SIZE + xB + i] = A[(threadIdx.x + i) · BLK SIZE + threadIdx.y + j]

end for
end for

else if blockIdx.x == blockIdx.y then ▷ parse diagonal block
same schema as non-diagonal case using only one block among A or B

end if

return X ▷ return transposed matrix

Note: Minor changes have been applied to the pseudo-code for better visualization and understanding

This is more or less a 1 to 1 translation of the block-based matrix transposition described in (1.1),
but implemented with CUDA. The most important aspect of this solution is the usage of shared
memory which is ×100 faster than the global memory (on no-cached accesses) and enables coalesced
writes (on global). Each thread block is in charge of copying 2 symmetrical blocks from X (one per
side w.r.t the main diagonal) inside the shared memory, referred as A (superior block) and B (inferior
block). Once the copy is completed for both blocks each thread block proceeds copying A and B inside
X following column major ordering on reads and row major on writes. Notice also that write addresses
on X of A and B are swapped.

6



Figure 6: block-based transpose on GPU

5 Experimental setup and analysis - GPU

Performance evaluation has been done on the University of Trento DISI department cluster,
which is equipped with many GPUs. For this experiment I’ve used a NVIDIA A30. here follows
some of the card’s specifics (relevant to the analysis):

• architecture : Ampere — 8.0 compute capability

• stream multiprocessors : 56 — 64 CUDA Cores/SM

• Global mem. size : 24062 MBytes

• L2 cache size : 25165824 bytes

• Shared mem. : 167936 bytes/SM — 49152 bytes/block

• Memory bandwidth : 933 GB/s

5.1 Performance analysis

(a) Execution time (b) Effective bandwidth

Figure 7: blocks version (CPU) vs. blocks-naive (GPU) vs. blocks-coalesced (GPU) matrix transpose

Comparing the CPU and GPU versions is basically meaningless for large enough matrices since values
are expressed in totally different scales. Resulting curves are flat one w.r.t the other in both plots and
the recorded increment in performances for a 215 × 215 matrix is ∼ 120×.

For reference, in addition to the kernel proposed in (4) I’ve implemented another one which does
the same job, but without the use of shared memory. Both solutions effective bandwidth linearly
increase up until the 211 step, after that the non-coalesced version (green) drops in performances and
becomes more unstable as the L2 cache gets saturated :

7



• 211 step means that 222 · 4 = 16777216 bytes allocated =⇒ L2 cache is filled in the next step as
224 · 4 = 67108864 bytes > L2 cache size (5).

This drop doesn’t occur in the coalesced version, as the global memory accesses don’t penalize as
much. The coalesced version seems to have reached a plateau after surpassing the 212 step, while the
non-coalesced one is in a decreasing trend which is getting more and more stable.

Kernel % of Theoretical BW Peak

Block-based naive 44.53%± 0.1%

Block-based coalesced 60.61%± 0.7%

+16.08% achieved with the application of shared memory

Table 2: Performance at the 215 matrix size step.

5.2 Parameters

The above data have been obtained by running kernels with the following setting :

• grid dim. : always large enough so that the entire matrix is covered (further discussed at 6) .

• thread block dim. : 8× 32

• matrix block size : 32× 32

That’s the parameter setting which provided me the best results considering that the matrix block
size can’t exceed 64 × 64 since maximum 49152 bytes of shared memory can be allocated per thread
block. Sure fact is that keeping the (thread block dim. < block size) is beneficial as not all threads in
a block can run in parallel, which makes less costy to just shift the thread with an index instead of
switching the context of many threads [1]. I’ve tried squared thread blocks which performed fine and
rectangular thread blocks such as 32 × 8 which performed significantly worse, but I’ve always came
beck to the 8 × 32 setting. My guess to this fact is that such a shape is more beneficial from an L1
caching perspective, as elements are cached sooner.

6 Conclusion and future directions

I’m aware that one choice which might be a limiting factor to my implementation (4) is choosing to
keep the grid size always as big as needed (matrix size

block size ). That’s because especially for bigger matrices it
might be more efficient to make each thread block parse additional X’s blocks and avoid the allocation
of too many thread blocks. It’s also true that such an implementation would need the addition of 2
more outer for loops, so I preferred to keep things simple and didn’t really explore that possibility.

Another thing to note is that my implementation works in-place on the input matrix, without the
need of initializing further memory (as in the CPU version 1.1). This design choice is beneficial from
a memory perspective at the cost of requiring more runtime (worsening effective bandwidth), as once
X is allocated there’s no need to initialize twice the memory to store the result.

Bank conflicts-wise this application is safe, as by default devices with compute capability ≥ 3.x have
bank sizes of 4 bytes [2]. Since this application works with float32 values and each thread processes
its data independently there’s no risk.

One direction I’d take if I had to further expand this project is to look at finer grain, reasoning on
what could improve at warp level.

6.1 Code

Code available on GitHub

8

https://github.com/LuCazzola/cudaMatrixTranspose.git


References

[1] Mark Harris. An efficient matrix transpose in cuda c/c++. https://developer.nvidia.com/

blog/efficient-matrix-transpose-cuda-cc/.

[2] Mark Harris. Using shared memory in cuda c/c++. https://developer.nvidia.com/blog/

using-shared-memory-cuda-cc/.

9

https://developer.nvidia.com/blog/efficient-matrix-transpose-cuda-cc/
https://developer.nvidia.com/blog/efficient-matrix-transpose-cuda-cc/
https://developer.nvidia.com/blog/using-shared-memory-cuda-cc/
https://developer.nvidia.com/blog/using-shared-memory-cuda-cc/

	Problem description
	Problem assessment

	Experimental setup and analysis - CPU
	Performance analysis

	Parallelization and future directions
	Alternative designs

	Moving on the GPU
	Experimental setup and analysis - GPU
	Performance analysis
	Parameters

	Conclusion and future directions
	Code

	Bibliografia

